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The Stokes boundary layer in the turbulent regime is investigated by using large-eddy
simulations (LES). The Reynolds number, based on the thickness of the Stokes
boundary layer, is set equal to Reδ =1790, which corresponds to test 8 of the
experimental study of Jensen et al. (J. Fluid Mech. vol. 206, 1989, p. 265).

Our results corroborate and extend the findings of relevant experimental studies:
the alternating phases of acceleration and deceleration are correctly reproduced, as is
the sharp transition to turbulence, observable at a phase angle between 30◦ and 45◦,
and its maximum between 90◦ and 105◦. Overall, a very good agreement was found
between our LES first- and second-order turbulent statistics and those of Jensen et al.
(1989). Some discrepancies were observed when comparing turbulent intensities in the
phases of the cycle characterized by a low level of turbulent activity.

In the central part of the cycle, namely from the mid acceleration to the late
deceleration phases, fully developed equilibrium turbulence is present in the flow
field, and the boundary layer resembles that of a canonical, steady, wall-bounded
flow. In those phases characterized by low turbulent activity, two separate regions
can be detected in the flow field: a near-wall one, where the vertical turbulent kinetic
energy varies much more rapidly than the other two components, thus giving rise
to the formation of horizontal, pancake-like turbulence; and an outer region where
both vertical and spanwise velocity fluctuations vary much faster than the streamwise
ones, hence producing cigar-like turbulence.

As a side result, the range of application of the plane-averaged dynamic mixed
model was assessed based on the qualitative behaviour over the cycle of a significant
parameter representing the ratio between a turbulent time scale and a free-stream
time scale associated with the oscillatory motion.

1. Introduction
The study of oscillating boundary layers represents an intriguing challenge in fully

understanding unsteadily driven turbulent flows. Despite the relevance of unsteady
turbulent boundary layers in many disciplines (coastal and offshore engineering,
biofluiddynamics, geophysical flows, just to cite some applications), most of the
research has been concerned with steady flows. Comparatively few investigations
have been devoted to the analysis of wall turbulence in unsteady flows.
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In the Stokes boundary layer, a zero-mean harmonic velocity field drives the flow,
and the Reynolds number

Reδ =
U0δS

ν

is commonly defined by means of the maximum amplitude of the outer velocity U0

and the Stokes-layer thickness δS =
√

2ν/ω, where ν is the kinematic viscosity of the
fluid and ω the angular frequency of the oscillations.

Experimental investigations (Hino, Sawamoto & Takasu 1976; Hino et al. 1983;
Jensen, Sumer & Fredsøe 1989; Akhavan, Kamm & Shapiro 1991a; Sarpkaya 1993)
have showed that the Stokes boundary layer experiences four different flow regimes,
depending on the value of Reδ: the laminar regime (L), the disturbed laminar regime
(DL), the intermittent turbulent regime (IT) and the fully developed turbulent regime
(T). In other words, as pointed out by Jensen et al. (1989, henceforth referred to as
JSF89), every phase of the cycle undergoes the different flow regimes with increasing
Reδ . At small values of Reδ turbulence first appears at the beginning of the decelerating
phase, associated with the presence of explosive near-wall bursts (Hino et al. 1983);
as Reδ increases turbulence is involved in earlier and earlier phases of the cycle. The
laminar regime holds for Reδ smaller than around 100; for Reδ roughly between 100
and 500–550 there is the disturbed laminar regime, characterized by the presence of
small-amplitude perturbations, imposed onto the base Stokes flow. As Reδ becomes
larger than 550, the two-dimensional pattern typical of the disturbed laminar regime
becomes a three-dimensional one and the flow moves to the intermittent regime,
where explosive turbulence bursts are created during the decelerating phases of
the cycle. A detailed discussion on these regimes can be found in Blondeaux &
Seminara (1979), Akhavan, Kamm & Shapiro (1991b), Vittori & Verzicco (1998).
Fully developed turbulence is present during the cycle only in the turbulent regime:
according to the experimental analysis by Hino et al. (1983) such a regime exists
for Reδ > 800; Sarpkaya (1993) and JSF89 clearly showed that at Reδ ∼ 1800 fully
developed turbulence is already present during most of the cycle of oscillation;
moreover, fully developed turbulence has been recorded throughout the cycle for
Reδ � 3460 (see JSF89).

Recent studies of oscillating boundary layers have been focused on the DL
and the IT regimes (Spalart & Baldwin 1987; Akhavan et al. 1991b; Vittori
& Verzicco 1998; Costamagna, Vittori & Blondeaux 2003) by means of direct
numerical simulations (DNS). Although computations at Reδ as large as 1120
have been attempted, reliable DNS have been carried out up to Reδ ∼ 800 (in
the IT regime), aimed at understanding the mechanism triggering transition to
turbulence and the evolution over the cycle of the near-wall turbulence structures
(for details see Vittori & Verzicco 1998; Costamagna et al. 2003). Direct numerical
simulations of the Stokes boundary layer in the turbulent regime have not been
carried out as yet, due to prohibitive computational costs as also observed by
Costamagna et al. (2003).

Over the last decade, large-eddy simulation (LES) has proved able to simulate
accurately equilibrium as well as non-equilibrium turbulent flows (Sarghini, Piomelli &
Balaras 1999; Wu & Squires 1998; Henn & Sykes 1999; Falcomer & Armenio 2002).
Moreover LES, used in conjunction with dynamic subgrid-scale models, has also
been demonstrated to simulate correctly flow fields characterized by sharp transition



Stokes boundary layer in the turbulent regime 255

to turbulence and local re-laminarization (see for example Germano et al. 1991;
Meneveau, Lund & Cabot 1996; Armenio & Sarkar 2002). For turbulent flows
subjected to periodic forcing, LES was successfully employed by Scotti & Piomelli
(2001) to study pulsating flow in a channel. Although there are some similarities
between the simulations of Scotti & Piomelli (2001) in the limit of the low-frequency
regime and the cases studied in the present research (similarities that will be exploited
in the next sections), as also discussed in Lodahl, Sumer & Fredsøe (1998) the flow
field analysed herein profoundly differs from the pulsating case. However, Scotti &
Piomelli (2001) showed that LES used in conjunction with a dynamic eddy-viscosity
subgrid-scale model is suitable for the investigation of unsteady periodic turbulent
flows which exhibit phases where the flow is in laminar conditions and phases where
sharp transition to turbulence occurs.

Large-eddy simulations of the Stokes boundary layer have been carried out by Hsu,
Lu & Kwan (2000) and by Lohmann et al. (2006). In the study of Hsu et al. (2000),
the results of an LES carried out with a dynamic eddy viscosity model were compared
with those of a simulation performed using the Reynolds-averaged equations (RANS).
The LES model was able to reproduce the reduction of the phase lag between the
wall shear stress and the free-stream oscillation occurring with increasing values of
the Reynolds number and to give a reasonable estimation of the maximum value
of the friction coefficient when compared to the experimental data of Kamphuis
(1975). However, the LES in the IT regime (at Reδ =864) was not able to capture the
characteristic, triangular-shaped evolution of the wall shear stress over a half-cycle
(compare for example their figure 9 with figure 5 of Costamagna et al. (2003) and
also with our figure 21). Comparisons with available experimental turbulent statistics
were not given.

Lohmann et al. (2006) used the classical model of Smagorinsky (1963) to
investigate a ventilated Stokes boundary layer in the fully developed regime at
Reδ =3464. Simulations were also carried out in an unventilated case (that
considered in the present paper) and results compared with the reference data of
JSF89. An overall reasonable agreement with the experimental data of JSF89 was
obtained, in particular the friction coefficient was overestimated by only 4 % when
compared to that in JSF89. However, noticeable differences were found in the time
evolution of the wall shear stress and in the first- and second-order statistics, because
the grid spacing used by Lohmann et al. was not small enough to solve properly the
near-wall streaks.

In the present paper we simulate the Stokes boundary layer in the turbulent
regime, at a value of the Reynolds number such that most of the cycle of
oscillation experiences fully developed turbulence. Owing to the large value of
the Reynolds number required for a simulation in the T regime, DNS are not
feasible and thus we used resolved (the concept will be explored in the next
section) large-eddy simulation, in conjunction with a dynamic mixed model (DMM).
The aim of the present study is to supply insights into the characteristics of the flow
field in the turbulent regime, also in comparison to the experimental investigations of
JSF89.

The paper is organized as follows: in the next section we formulate the problem
together with the mathematical model adopted and we give an overview of the simu-
lations carried out. Section 3 contains the results of our simulations and comparisons
to the relevant literature. Section 4 deals with the performance of the DMM in two
different regimes, namely the T regime discussed throughout the paper and the IT
regime at Reδ = 990. Concluding remarks are given in § 5.
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2. The problem formulation
We investigate an oscillatory flow driven by an harmonic pressure gradient in the

x-direction:
dPd

dxd

(td) = − U0ω cos(ωtd) (2.1)

where Pd is the dimensional kinematic pressure (i.e. pressure divided by the fluid
density ρ0), U0 and ω are defined in the previous section, td and xd are respectively the
time and the streamwise direction, namely that along which the oscillation develops.
Henceforth the index d denotes dimensional variables. The pressure gradient defined
above gives the following free-stream velocity:

Ud(td) = U0 sin(ωtd).

In their experimental study, JSF89 considered a large-scale Reynolds number defined
as Re= aU0/ν where a = U0/ω is the amplitude of the free-stream motion (the
amplitude of the sinusoidal motion of a fluid parcel moving in the free-stream region)
and ν is the kinematic viscosity, observing that a fully developed turbulent regime
appears for Re � 1.6 × 106. Within this regime JSF89 investigated values of Reynolds
number up to 6 × 106. Since

Re =
Re2

δ

2
the following range of values was studied in the turbulent regime:

1790 � Reδ � 3464.

In the present paper we reproduce test 8 (as reported in table 1 of JSF89), which
is for Re= 1.6 × 106 corresponding to Reδ = 1790. As already discussed, according
to Sarpkaya (1993) at this Reynolds number turbulence is present in most of the cycle.
As we clearly show in the next section, in making the choice of the Reynolds number of
the simulation a compromise had to be reached between the need to simulate a value
of Re large enough to lie within the T regime and the computational requirements for
a resolved LES, namely a simulation where the near-wall streaks are solved directly.

2.1. The mathematical model

In LES, the large, energy-carrying scales of motion are resolved directly, whereas the
small, more isotropic and dissipative scales are parameterized by means of a sub-
grid-scale model. The filtered, non-dimensional equations governing the oscillating
boundary layer driven by an harmonic pressure gradient are

∂ūi

∂xi

= 0, (2.2)

∂ūi

∂t
+

∂ūj ūi

∂xj

= − ∂p̄

∂xi

+
1

Re

∂

∂xj

∂ūi

∂xj

+ cos(t)δi1 − ∂τij

∂xj

. (2.3)

In (2.2) and (2.3), an overbar denotes the filtering operation, the coordinate xi

(hereafter x1, x2, x3 or x, y, z are used interchangeably for the streamwise, spanwise
and wall-normal directions) is made non-dimensional with the amplitude of motion a,
t is the time coordinate made non-dimensional with 1/ω, ūi is the i-component of the
filtered velocity field (u1, u2, u3 or u, v, w are used for the streamwise, spanwise and
wall-normal velocity components), made non-dimensional with U0, p̄ is the filtered
pressure field made non-dimensional with ρ0U0

2.
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The term

τij = (uiuj − uiuj ) − 2C∆
2|S|Sij (2.4)

represents the subgrid-scale (SGS) stresses that are parameterized by means of a
dynamic mixed model composed of an anisotropic scale-similar part (Bardina et al.
1980) and an eddy viscosity part (Smagorinsky 1963). In (2.4) C is the constant of
the eddy viscosity part of the model, ∆ is the filter width, Sij are the elements of the

resolved strain rate tensor and |S| =
√

2SijSij . The model was implemented following

the mathematically consistent formulation of Vreman, Guerts & Kuerten (1994). The
constant C is evaluated using the least-square procedure of Lilly (1992):

C = −1

2

〈LijMij 〉 − 〈NijMij 〉
〈MmnMmn〉 (2.5)

where 〈.〉 represents an appropriate ensemble averaging required to avoid the math-
ematical inconsistency associated with the extraction of the constant C from a filtering
operation. We average the terms of (2.5) over the (x, y) planes of homogeneity. The
model is recast in a contravariant form following Armenio & Piomelli (2000). In (2.5)

Lij =Σij − τ̂ij = ûiuj − ûi ûj

is the resolved turbulent stress tensor, Σij is the subtest-scale stress tensor and a hat
denotes the explicit filtering operation carried out at the test level. The other terms
of (2.5) are respectively

Mij = ∆̂
2

|Ŝ|Ŝij − ∆̂
2
SSij , (2.6)

Nij = (
̂̂
uiûj −

̂̂
ui

̂̂
uj ) − (ûiuj − ûiuj ). (2.7)

Consistently with the use of a top-hat filter (Lund 1997), the value
√

6 was used for

the filter width ratio ∆̂/∆. Finally, filtering was performed in three directions, in the
computational space (see Armenio & Piomelli 2000). A detailed discussion on the
mathematical formulation of the model and its performance is given in Armenio &
Piomelli (2000) and is not repeated here. Our LES is applied without any explicit
filtering at the cutoff. The literature supports this choice: see among others Wu &
Squires (1998), Ding & Street (2003), Cui & Street (2001), Calhoun & Street (2001),
Henn & Sykes (1999). In particular, these studies have clearly demonstrated the good
performance of the SGS models even when used in conjunction with second-order
space accuracy.

Explicit filtering was attempted to isolate the effect of filtering from truncation
error of the numerical scheme. For second-order finite difference schemes, Lund &
Kaltenbach (1995) found that explicit filtering improves LES results, although
more accurate results (at a smaller computational cost) were achieved by mesh
refinement without explicit filtering. Similar conclusions were drawn in the recent
study of Gullbrand & Chow (2003). Specifically, they showed that the advantages of
the use of explicit filtering, that on the other hand is computationally very expensive,
are progressively lost when the grid size is able to resolve the important physical
characteristics of the flow and to obtain a solution that is not greatly affected by
numerical error. This is the strategy accomplished in the present work.
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2.2. The numerical method and the boundary conditions

Equations (2.2) and (2.3) are solved by means of the semi-implicit, fractional-step
method of Zang, Street & Koseff (1994). The convective terms are integrated in
time using the Adams–Bashforth technique, the diffusive terms are treated implicitly
by the use of the Crank–Nicolson scheme. The spatial derivatives are discretized
with a second-order centred scheme. The Poisson equation for the pressure field is
solved with a multigrid technique. Overall, the algorithm is second-order accurate
both in time and in space. The algorithm, together with the SGS model, has been
used for the analysis of a wide variety of steady non-equilibrium turbulent flows
(see for example Armenio & Piomelli 2000; Falcomer & Armenio 2002) and steady
flows characterized by local re-laminarization and sharp re-transition to turbulence
(Armenio & Sarkar 2002; Armenio & Sarkar 2004).

A no-slip boundary condition is enforced at the bottom wall and a free-slip
condition at the top boundary, while, since turbulence is homogeneous in the
streamwise and spanwise directions, periodic boundary conditions are taken there.

As initial condition we first started a simulation using a steady, driving pressure
gradient with non-dimensional amplitude equal to −1 and, after a turbulent field
had developed, we removed the mean velocity field, holding the fluctuating three-
dimensional components, and started the oscillatory motion. The use of such an
initialization technique has saved a large amount of CPU time, compared to the case
of a simulation started from a fluid at rest that thus has to develop through the flow
regimes discussed in the previous section. The statistics were accumulated by averaging
over the (x, y)-planes of homogeneity, and in phase over half-cycle (thereby referred
to as ensemble-averaging) taking advantage of the fact that the flow field repeats
every half-cycle with the sign of the mean streamwise velocity reversed. The data from
the first cycle of oscillation were not used for the evaluation of the statistics, since they
could have been affected by the initial conditions. We have accumulated the statistics
over 15 complete cycles, thus using 30 half-cycles for each phase of the oscillation.

The computational effort needed for the simulation of the present flow has required
the implementation of a parallel version of the code. The parallel-programming
paradigm adopted is the Message Passing Interface standard (MPI), developed by the
domain decomposition strategy.

2.3. Computational requirements

It is well recognized that the main requirement for an accurate LES is that the
near-wall turbulent structures be solved properly. In canonical boundary layers it is
well established that the near-wall streaks are elongated in the direction of motion,
extending for about 1000 and 100 wall units respectively in the streamwise and
spanwise directions (Pope 2000). The direct resolution of such structures requires the
maximum grid spacing in the streamwise and spanwise directions to be respectively
∆x+ = ∆xd/z

∗ ≈ 60, ∆y+ = ∆yd/z
∗ ≈ 20 where z∗ = ν/uτ is the wall unit; uτ =

√
τw/ρ0

denotes the friction velocity, where τw is the wall shear stress (for an exhaustive
discussion the reader is referred to Piomelli & Balaras 2002). A large-eddy simulation
that does not fulfil such a requirement is not able to resolve the near-wall, large-scale
structures and consequently tends to wrongly estimate the wall shear stress.

In the oscillatory flow problem, the wall shear stress varies in time over the cycle,
and the maximum is reached around the end of the acceleration phase. To evaluate
the wall unit z∗ we used the maximum value of the wall shear stress as measured
in test 8 of JSF89 (the value Uf m = 4.8 cm s−1 read from their table 1, has been
appropriately scaled over our numerical parameters).
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Lx/δS, Ly/δS, Lz/δS nx × ny × nz ∆x+, ∆y+, ∆z+
min, ∆z+

max ε

C1 50, 25, 40 64 × 32 × 256 62, 62, 2, 22 0
C2 50, 25, 40 64 × 64 × 256 62, 31, 2, 22 0
C3 50, 25, 40 64 × 96 × 256 62, 21, 2, 22 0
C4 50, 25, 40 96 × 96 × 256 41, 21, 2, 22 0
C5 50, 25, 40 64 × 96 × 400 62, 21, 1, 20 0
C6 50, 25, 40 64 × 96 × 256 62, 21, 2, 22 0.005
C7 50, 25, 80 64 × 64 × 512 62, 31, 2, 22 0

Table 1. Computational parameters of the simulations at Reδ = 1790. The non-dimensional
grid spacing is referred to the maximum wall shear stress over the period and consequently to
the minimum value of the wall unit z∗ = ν/uτ .

Because of the periodicity in the horizontal directions, the dimensions of the
computational box Lx and Ly must be such that the two-point correlation function of
the velocity and pressure fields decays completely within half the length of the domain
(see Moin & Mahesh 1998). Based on previous DNS results (Costamagna et al. 2003),
we chose Lx ≈ 50δS and Ly ≈ 25δS . We have carefully checked that the dimensions
of the computational domain used in our simulations satisfy such a condition. The
wall-normal (vertical) dimension of the domain was chosen equal to Lz =40δS , that
is about twice the depth of the fluid column along which significant values of the
Reynolds stresses are obtained, at the value of Reδ investigated herein.

The details of the computational parameters are in table 1. Several grid resolutions
were considered in the horizontal plane, all of them characterized by having uniform
grid spacing. In the vertical direction the cells were clustered in the wall region
using an hyperbolic tangent distribution. In particular, in most simulations about
30 cells were placed within δS , except case C5 where there are 60 cells, and the first
velocity point from the bottom wall was located at z+ = 1 (in C5 at z+ = 0.5). Cases
C1–C5 refer to the domain described above in conjunction with the use of a free-slip
condition at the top wall and increased grid resolution.

As will be shown in the next section, in spite of the fact that grid convergence has
been reached in our quasi-dns simulations (the definition was first given by Spalart
et al. 1997), some disagreements between numerical results and the experimental
ones have been observed, especially in the phases of the cycle where low levels of
turbulence are recorded. With the aim of reducing possible sources of disagreement,
two additional simulations were performed, using domain configurations different
from those of cases C1–C5.

Specifically, case C6 refers to a simulation using the domain and grid spacing as
in C3 together with a small-amplitude perturbation of the bottom wall. Vittori &
Verzicco (1998) showed that a small-amplitude perturbation, that from a practical
point of view gives a mirror-shine smooth wall, is enough to trigger turbulence in the
IT regime. Vittori & Verzicco (1998) considered the following disturbance at the wall:

zw(x, y) = ε[cos(0.5x) + 0.1 cos(y)]

with ε = hd/δS = 10−3 where hd is the dimensional amplitude of the disturbance.
We use longitudinal and spanwise wavelengths equal to those of the most unstable
streamwise and spanwise modes. The first cos-function corresponds to the most
unstable two-dimensional mode (Blondeaux & Seminara 1979), while according
to Akhavan et al. (1991b) the second cos-function corresponds to a perturbation
that gives the maximum growth rate of a three-dimensional disturbance, when
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Figure 1. Evolution over 3 periods of simulation of relevant bulk quantities: (a) free-surface
streamwise velocity; (b) driving pressure gradient; (c) resolved volume-integrated turbulent
kinetic energy per unit volume (see (3.1)). Data from simulation C4.

superimposed on a pre-existing two-dimensional large-amplitude disturbance. The
aim of simulation C6 is to show whether a small-amplitude wall perturbation may
alter the level of turbulence fluctuations within the boundary layer and trigger
turbulence earlier in the acceleration phases of the cycle, in order to explain possible
causes of disagreement between numerical results and experimental data.

Case C7 refers to a simulation carried out with the same resolution as in C2 but
using a domain delimited by two solid walls and doubled in size in the wall-normal
direction, in order to check whether the free-slip condition applied at 40 δS could
affect the turbulent statistics within the Stokes boundary layer.

Note that the non-dimensional grid spacing reported in table 1 refers to the max-
imum value of the wall shear stress over the cycle, hence corresponding to the mini-
mum value of the wall unit. As will be shown in § 3 the wall shear stress at the
beginning of the sharp transition to turbulence is about (1/3)τw,max , thus giving a grid
spacing in wall units decreased by a factor 1.7 at a phase of 30◦.

Additional simulations were performed in the intermittent regime at Reδ = 990 with
two main aims:

(i) to investigate the performance of the model in off-design conditions, namely
in strongly non-equilibrium conditions where the hypotheses underlying the dynamic
procedure cease to hold;

(ii) to compare results of a new direct simulation with available experimental data.
This test was carried out to assess whether the disagreement between numerical and
experimental results can be simply attributed to SGS modelling errors or needs to be
sought elsewhere. The results of these tests are presented in § 4.

3. Results and discussion
Figure 1 shows, for three complete cycles of simulation, the free-stream velocity

U (t) as recorded at the top of the domain, the outer pressure gradient Π(t), and the
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resolved volume-integrated turbulent kinetic energy per unit volume defined as

E =
1

V

∫
(u′′2 + v′′2 + w′′2) dV (3.1)

where V = LxLyLz is the volume of the computational box. Owing to homogeneity in
the (x, y)-planes, E represents the resolved turbulent kinetic energy integrated over
the depth of the fluid column per unit depth. The double prime denotes fluctuating
resolved quantities, whereas we indicate with a prime the total fluctuating quantity,
namely the resolved + SGS contribution.

As shown in figure 1 E varies strongly over the cycle: it starts to increase at around
30◦, it peaks slightly after 90◦ and then decays. Such behaviour was detected in the IT
regime as well by Costamagna et al. (2003), although in the intermittent regime they
investigated the sharp increase of E occurs at the very late acceleration phases of
the cycle. In their low-Reynolds-number experiment, Hino et al. (1983) identified two
main mechanisms of turbulent production in the Stokes boundary layer: (i) a classical
shear instability occurring in the mid-to-late acceleration part of the cycle, depending
on the value of the Reynolds number; (ii) an explosive turbulent motion generated
by the collapse of the near-wall shear occurring in the first phases of deceleration.
Although the second mechanism clearly appears even in the low-Reynolds-number
cases (namely in the IT regime), the first one becomes more and more important and
occurs earlier in the cycle with increasing Reynolds number (see for example figure 8 of
JSF89). The evolution of E over the cycle reflects this behaviour: E rapidly increases
around 30◦–45◦, associated with the triggering to turbulence occurring at this phase
due to a sudden increase of turbulent production. At the present Reynolds number
(Reδ = 1790) the suppression observed by Hino et al. (1983) at Reδ = 876 in the late
acceleration (flow state defined as rudimentary turbulence) is not observed, since the
shear instability dominates over the favourable pressure gradient, and consequently
the reduction of E in the late acceleration phase is not observed. E is maximum in
the early deceleration due to the explosive-like mechanism discussed in Hino et al.
(1983). As they report, in the mid deceleration phases E rapidly decays due to the
rapid increase of turbulent dissipation related to the generation of a large population
of small-scale structures (as we will show in the next section). Finally in the late
deceleration phase, when the near-wall velocity reverses, a new laminar boundary
layer is developing in the opposite direction, turbulent production as well as small-
scale turbulent structures are almost absent, and the fluid column is characterized
by the presence of large-scale structures coming from the previous phases due to a
history effect. At these phases, as well as at the early acceleration phases, where the
new laminar boundary layer continues to evolve, E is around its minimum, due to
the residual turbulence from the preceding deceleration phases.

Figure 2 shows the non-dimensional numerical plane- and phase-averaged (already
referred to as ensemble-averaged) values of the wall shear stress obtained in
simulations C1–C5 together with the experimental values of JSF89, obtained using
a Dantec 55R46 hot-film probe mounted in the middle of the working section. The
grid C1 is not able to give an acceptable value of the wall shear stress, because
the streaks are not properly resolved along the spanwise direction; as a result the
maximum value of the friction coefficient

cf = 2τw,max

/
ρU 2

0

is under-predicted by about 26% (0.0033 against the value cf 0 = 0.0044 obtained in
the experiment of JSF89). Grid C2 behaves much better (the friction coefficient is



262 S. Salon, V. Armenio and A. Crise

0 60 120 180 240 300 360
Phase (deg.)

0

0.4

0.8

1.2

1.6

2
τ w

/ρ
U

0(
2
νω

)1
/2

Figure 2. Non-dimensional wall-shear stress ensemble-averaged over 15 cycles: C1 (dashed
line); C2 (dash-dotted line); C3 (dash-dot-dot line); C4 (solid line); C5 (dotted line); exp-
erimental data of JSF89 (dots).

under-predicted by 5%); however grid-convergence is obtained with grids C3, C4
and C5 which respectively give cf /cf 0 = 1.03, cf /cf 0 = 1.01 and cf /cf 0 = 1.04. The
improvement obtained with grids C3–C5 compared to the results of case C2 is
particularly evident during the sharp transition to turbulence observable from 30◦ in
figure 2. Note that the streaks are well-resolved by grid C3, and a further increase
of the resolution does not improve the results significantly. On the other hand, the
non-dimensional grid spacing at 30◦ (based on the actual value of the wall shear
stress at 30◦) is ∆x+

30 ∼ 36, ∆y+
30 ∼ 12 and ∆z+

min,30 ∼ 1.17 with grid C3 and even
smaller with the other two grids. Although in general the agreement between fine-grid
results and the experimental data of JSF89 is very satisfactory, some differences are
observable in figure 2, basically because the module of the ensemble-averaged wall
stress obtained in the experimental tests of JSF89 appears slightly non-symmetric
over a half-cycle. This feature is observable in most of the high-Reynolds-number
tests of the experiments of JSF89 and, as discussed in successive work of the Danish
Group (Sumer, Laursen & Fredsøe 1993; Fredsøe et al. 1993), can be attributed to
the presence of a slight streaming that arises due to the inclusion of the rectangular
working section in the U-shaped oscillatory water tunnel. On the other hand, the
disagreement between numerical and experimental data in the region of near-wall
flow reversal (around 160◦) can be attributed to the fact that the hot-film probe is
not able to give an accurate evaluation of the wall shear stress in the small time
windows where the near-wall velocity is almost zero.†

† As pointed out by a referee, the experiments used the hot-film technique. The amount of heat
transferred from the hot film to the fluid is constantly monitored. During the flow reversals near/at
the bed, there is still heat transfer from the probe to the ambient fluid, and therefore one measures
a non-zero heat conduction during these small time windows where the velocity at/near the bed is
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Figure 3. Non-dimensional r.m.s. of wall shear stress ensemble-averaged over the 15 cycles:
C3 (dashed line); C4 (solid line); C5 (dotted line); experimental data of JSF89 (dots).

The evolution over the late deceleration–acceleration phases of the wall shear stress
exhibits a two-slope behaviour: from 160◦ to about 30◦ for the value of Reδ invest-
igated herein it is characterized by a somewhat sinusoidal behaviour. This corresponds
to the part of the cycle where E is around its minimum (see figure 1c) and a new
laminar boundary layer is forming in the opposite direction with respect to the
previous half-cycle. From about 30◦ a rapid increase of the wall shear stress is
observed, that corresponds to the transition to turbulence and the rapid increase of
E (see figure 1c). This behaviour, which is consistent with the experimental data of
JSF89, is reproduced very well by our computations C3–C5. After the maximum
value has been reached at about 80◦ the wall shear stress decays over the phases of
deceleration. Again the fine-grid simulations (C3–C5) predict this behaviour very well.
Consistently with JSF89, the evolution of the wall stress and of the outer velocity
are not in phase (compare figure 2 with figure 1a). In the laminar flow case the
analytical solution gives a phase delay equal to π/4; the increase of vertical mixing of
momentum due to turbulence reduces the phase lag between the free-stream velocity
and the wall shear stress. At Reδ = 1790, simulations C2–C5 give a phase delay of
the velocity field with respect to the wall stress of around 10◦, in agreement with
the experiments of JSF89, whereas a somewhat smaller value (around 5◦) is obtained
with the coarse grid C1.

The boundary layer thickness, defined as the distance from the wall to where the
mean shear is zero at 90◦, is also predicted well by our simulations: C2–C5 give a
value of δ/a ≈ 0.015 which is in fair agreement with that shown in figure 24 of JSF89
(from the experimental data the height corresponding to the maximum streamwise
velocity at 90◦ is 23.5 mm: since a|JSF89 = 1.58 m we obtain δ/a|JSF89 = 0.0149).

Figure 3 shows the non-dimensional ensemble-averaged r.m.s. values of the
wall shear stress obtained in C3–C5, together with the data of JSF89 obtained
using the single-point data of 50 oscillatory cycles. In spite of a good agreement

almost zero. So what is seen as non-zero bed shear stress is the heat measured during this time and
has no physical meaning. Hence the use of raw data is erroneous for these times.
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observable during the first phases of acceleration and the late deceleration, a general
overestimation is observed during the central parts of the half-cycle where fully
developed turbulence is present.

Summing up, our fine-grid results (C3 to C5) reproduce very well the evolution
over a cycle of the ensemble-averaged wall shear stress whereas some disagreements
are observed when comparing τrms obtained in the numerical simulations with those
derived from the experiments. We have checked that neither the inclusion of a small-
amplitude disturbance at the bottom wall (C6), nor the use of a domain height equal
to 80δS (C7) improve the results, thus showing that the causes of such disagreement
have to be sought elsewhere. Note that grid convergence was obtained in our quasi-dns
simulations (Spalart et al. 1997) and appreciable variations of τrms are not expected
with increased resolution. This point deserves more research.

The vertical profiles of the mean streamwise velocity, made non-dimensional with
the ensemble-averaged friction velocity, are plotted every 15◦ in a semi-log plot in
figure 4, for simulations C2–C5, together with the data from experiment 8 of JSF89.
A good agreement between numerical and experimental results is observable in most
of the half-cycle. Small disagreements between numerical and experimental data are
observable in the range 150◦–165◦. This can be attributed to the fact that in this range
of phases the friction velocity used for the normalization of the velocity data is very
small and, consequently, small differences in this value may result in large differences
in the non-dimensional velocity profiles. When making the mean velocity profiles
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non-dimensional with the outer velocity U0 (not shown) such differences disappear
and the numerical data are very close to the experimental ones. Note that at 165◦

in figure 4 the velocity is negative close to the wall, due to the previously discussed
near-wall flow reversal that has already occurred at 160◦ (see figure 2).

As is well known, a logarithmic vertical distribution of the mean streamwise
velocity characterizes a steady boundary layer. The presence of the log-layer
u+ = (1/κ) log(z+) + A was also detected in the experiments of JSF89 for the Stokes
boundary layer. In particular, the authors stated: ‘. . .the higher Re, the earlier the
logarithm layer comes into existence’. At Reδ = 3464 they observed a log-layer with
κ = 0.4 and A= 5, values nearly equal to those of a canonical steady boundary layer,
to span the half-cycle from about 15◦ to about 150◦. The range of phases characterized
by a log-layer becomes narrower when the Reynolds number decreases. Our results
are consistent with those of the experimental investigations for test 8 at Reδ = 1790.
As shown in figure 4, the presence of a log-layer is detected from about 60◦ to about
150◦.

The values of the von Kármán constant found both for case C4 and for the
experimental data, by log-fits in those phases where the log-layer is clearly observed,
differ from the theoretical value of κ = 0.41 by no more than 10 % over the phases,
whereas the intercepta A appears more sensitive to the phase position over the half-
cycle. In particular, it appears to range from A ≈ 6 for 60◦ <ωt < 90◦ to A ≈ 5 for
120◦ � ωt � 150, probably due to a low-Reynolds-number effect.

3.1. The Reynolds stresses

Figure 5 shows the vertical profiles of the non-dimensional Reynolds shear stress
〈u′w′〉 plotted every 15◦. As previously stated, grid C1 is not able to resolve the
near-wall streaks responsible for the development of 〈u′w′〉 which, as a consequence,
is strongly underestimated especially at 45◦, when the near-wall turbulent shear stress
dramatically increases up to four times than that observable at 30◦.

The general underestimation of the Reynolds shear stress in the wall region obtained
with simulation C1 explains the low values of the wall stress shown in figure 2.

For the results of simulations C3–C5, the agreement between numerical and
experimental data is very good, except for the last two phases characterized by a
low level of the Reynolds shear stress and a general low turbulent activity (see
figure 1c). The presence of the Reynolds shear stress is a signature of turbulent
activity in wall-bounded turbulence. The analysis of figure 5 shows that such activity
is particularly evident in the near-wall region and during the central phases of the
cycle, from 45◦ to 150◦, when non-zero values of 〈u′w′〉 extend along almost half the
channel. On the other hand, during the initial and the final parts of the half-cycle,
the Reynolds shear stress tends to be very small.

In figure 6 and 7 we show a comparison between computed and measured r.m.s. (also
referred to as turbulent intensities) of the streamwise and vertical velocity components
respectively. For urms our results are in good agreement with the experimental
ones, especially from 30◦ to 105◦ where fully developed turbulence is observed. Apart
simulation C1, no appreciable differences among the results of simulations C2–C5 are
detected. Small discrepancies between numerical and experimental data are detected
between 150◦ and 15◦.

For the vertical turbulence intensity wrms , generally good agreement between num-
erical results and experimental data is observable from 45◦ to 150◦ for simulations
C3–C5. In particular, the increase of resolution in the vertical direction (grid C5) gives
better agreement with experimental data in the parts of the cycle characterized by
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Figure 5. Non-dimensional ensemble-averaged Reynolds shear stress 〈u′w′〉/U 2
0 from 15◦

to 180◦: C1 (dotted line), C2 (dashed line), C3 (dashed-dotted line), C4 (solid line),
C5 (dashed-dotted-dotted line), C6 (dashed-dashed-dotted line). Dots are the experimental
data of JSF89. Note that henceforth the total second-order statistics (namely resolved plus
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Figure 7. Non-dimensional vertical turbulence intensity wrms/U0 from 15◦ to 180◦:
C1 (dotted line), C2 (dashed line), C3 (dashed-dotted line), C4 (solid line), C5 (dashed-
dotted-dotted line), C6 (dashed-dashed-dotted line). Dots are the experimental data of JSF89.

developed turbulence. It is noteworthy that the vertical turbulent intensity predicted
with simulation C1 is qualitatively wrong at 45◦, where a rapid increase of the turbu-
lence level associated with a corresponding increase of the wall shear stress is detected.

All simulations predict values of the vertical turbulent intensity smaller than that
measured by JSF89 in the range of phases between 150◦ and 30◦ where a low level of
turbulent kinetic energy is recorded. Our results are in qualitative agreement with the
experimental measures of Hino et al. (1983), who showed (in their figure 11b) that the
vertical turbulent intensity decays by roughly a factor 2 in the late deceleration–early
acceleration phases of the cycle. Note that the inclusion of a small-amplitude wall
imperfection (simulation C6) does not produce appreciable variations in the results,
and this is in agreement with the findings of Vittori & Verzicco (1998), who showed
that beyond Reδ ∼ 1000 small-amplitude wall imperfections do not affect triggering
to turbulence and the level of fluctuations in the flow field. The results of grid C7
(not reported in figure 7) show that the free-surface condition applied at zd/δS =40
does not affect the level of vertical fluctuations. This can be attributed to the fact that
the thickness of the domain where appreciable turbulent fluctuations are observable
is located below 25δS .

Finally, figure 8 shows the vertical distribution of the spanwise velocity fluctuations
vrms . Similarly to a canonical steady boundary layer, this quantity rapidly increases
in the near-wall region, reaches its maximum where the streamwise fluctuations are
large and slowly decays in the far field. For this quantity experimental data are not
available, since two-dimensional measurements of the velocity field were carried out in
test 8 of JSF89. However, in agreement with what was found for the other turbulent
intensities, no appreciable differences were detected among simulations C3–C5.
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Figure 8. Non-dimensional spanwise turbulence intensity vrms/U0 from 15◦ to 180◦:
C1 (dotted line), C2 (dashed line), C3 (dashed-dotted line), C4 (solid line), C5 (dashed-
dotted-dotted line), C6 (dashed-dashed-dotted line).

To summarize, the results of our simulations show a very good agreement between
numerical and experimental Reynolds stresses, especially in the parts of the cycle
where fully developed turbulence occurs. Some differences are observable for the
wall-normal turbulent intensity. The magnitude of the Reynolds stresses predicted by
the simulations is almost unaffected by the increased grid resolution in the phases
of the cycle between 150◦ and 30◦. This can be attributed to the fact that in those
phases small-scale structures are almost absent (see Hino et al. 1983), so the subgrid
model automatically tends to switch off, as shown in § 4, and the simulations behave
similarly to a DNS.

It is difficult to speculate on the possible causes of the observed disagreements
but discrepancies between numerical (DNS) results and experimental data were
previously recognized in the literature, in particular in the wall-normal distribution of
the ensemble-averaged Reynolds stresses. The comparison of DNS data of Spalart &
Baldwin (1987) with the experimental ones of JSF89 in the IT regime (Reδ = 1000)
shows some discrepancies in the ensemble-averaged Reynolds shear stress over the
whole cycle, in the streamwise turbulent intensity in the central part of the cycle and
in the vertical turbulent intensity in the near-wall region along the whole cycle (see
figures 19–21 of JSF89). In Costamagna et al. (2003) discrepancies between DNS at
Reδ =990 and experimental (from JSF89, at Reδ = 1000) turbulent intensities were
attributed to the fact that the numerical simulations were carried out over a small
domain in all directions (Lx/δS = 25, Ly/δS = 12.5, Lz/δS = 25). In § 4 we show that at
Reδ =990 disagreements between DNS and experimental data cannot be attributed to
the domain size. In conclusion, our simulations show that the disagreement observed
in the phases with low turbulence level is not due to:
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(i) the presence of the free surface at the top of the domain, when far enough
from the region where significant vorticity is observed;

(ii) small-amplitude wall imperfections with wavelengths equal to those of the
two-dimensional and three-dimensional most unstable modes.
However it should be pointed out that most of the disagreements are observable in
the near-wall region, where, as discussed in, JSF89 p. 282, the experimental data are
affected by a high drop-out rate in the laser measurements. More research is needed
in order to determine the causes of the observed disagreements.

Hereafter the discussion of the characteristics of the Stokes boundary layer is based
on the results of simulation C4, although no appreciable differences were observed
when using data from simulations C3 and C5.

The eddy viscosity νT = −〈u′w′〉/(d〈u〉/dz) normalized with the molecular viscosity
ν is shown in figure 9. A common feature at all the phases is the presence of a
distance from the wall at which the velocity profiles have a maximum, corresponding
to d〈u〉/dz =0 and thus to a singularity in the vertical distribution of the eddy
viscosity. Figure 9 shows that the vertical location of the singularity monotonically
increases over the half-cycle. It is interesting to observe that the eddy viscosity behaves
differently in the two regions below and above the singularity. In the near-wall region,
located below the singularity point, from 0◦ to 45◦ the eddy viscosity is very small and
rapidly increases from O(1) to O(10). This corresponds to the presence of the rapidly
evolving near-wall laminar boundary layer. In the remaining half-cycle the near-wall
region is characterized by νT /ν ∼ O(102). Conversely, the outer region (above the
singularity point) is characterized by having a nearly constant eddy viscosity O(102)ν
over the whole half-cycle. In particular, we observe the presence of relevant eddy
viscosity up to zd/δS ∼ 25, well above the singularity point, that, according to the
canonical definitions of boundary layer theory, would characterize the thickness of
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Figure 10. Evolution of the mixing length from 60◦ to 135◦. The crosses are the value
calculated from (3.2) in conjunction with data from C4. The solid line is the theoretical
expression given by (3.3). The quantity is made non-dimensional with the wall unit z∗ calculated
at each phase using the ensemble-averaged value of the friction velocity.

the oscillating boundary layer. The presence of relevant eddy viscosity above the
boundary layer thickness is due to a history effect (Hino et al. 1983; JSF89), namely
large-scale turbulent structures generated in previous phases of the half-cycle tend to
remain in the flow field during the late deceleration where turbulent production has
ceased. At zd/δS > 25 turbulence activity is not detected and the flow field appears
irrotational.

The concept of mixing length is closely related to eddy viscosity and the existence
of the log-layer previously discussed. We have evaluated the mixing length lT using
the classical expression, as also reported in Pope (2000),

νT = l2T (d〈u〉/dz), (3.2)

for those phases where a well-developed log-layer clearly appears. In figure 10 we plot
lT calculated from the data of simulation C4, and compare it with the theoretical value

lT ,th = κz
√

1 − z/D (3.3)

where D is the distance from the wall at which 〈u′w′〉 goes to zero, and κ =0.41.
The theoretical value assumes 〈u′w′〉 to be a linear function of z and the presence
of a logarithm velocity profile. The mixing length, expressed in wall units, increases
from an average value of about 80 at 60◦ up to about 100 between 105◦ and 120◦,
then decreasing to around 80 at 135◦. Since the mixing length is a rough measure
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Figure 11. Spectra of resolved streamwise fluctuation E11/U 2
0 along the streamwise

direction, at zd = δS: (a) 15◦ (dotted line), 30◦ (dashed line), 45◦(solid line); (b) 60◦ (dotted
line), 75◦ (dashed line), 90◦ (solid line); (c) 105◦ (dotted line), 120◦ (dashed line), 135◦ (solid
line); (d) 150◦ (dotted line), 165◦ (dashed line), 180◦ (solid line). The straight lines are the
isotropic Kolmogorov spectra (18/55)Csε

2/3k−5/3 with the dissipation rate ε calculated at the
actual phases; Cs = 1.5 is the universal Kolmogorov constant (Sreenivasan 1995). Data from
simulation C4.

of the extent of the largest eddies present in the flow field, we observe that, once the
log-layer is established in the cycle, the vertical scale of these eddies increases up to
a maximum value which is about 1/30 of the entire channel height and about 120 %
of the thickness of the laminar Stokes boundary layer. The small departures from
the theoretical value observable in the outer region are due to the fact that in this
region the mean shear d〈u〉/dz slightly deviates from the theoretical value uτ/κz.

3.2. The turbulence structure

Figures 11, 12, 13 show the one-dimensional spectra of resolved velocity fluctuat-
ions along the x-direction at zd = δS . Figures 11 and 13 also contain the universal
Kolmogorov spectra:

E11 =
18

55
Csε

2/3k−5/3, E33 =
24

55
Csε

2/3k−5/3,

with Cs = 1.5 (see Sreenivasan 1995) that hold for equilibrium turbulence in the limit
of high-Reynolds-number flow.

In the initial phases of the acceleration part of the half-cycle (around 15◦),
figure 11(a) shows that the level of the turbulent fluctuations in the direction of
motion is very small. Interestingly, at this phase the spectrum of the spanwise turbulent
fluctuations E22/U 2

0 (figure 12a) has the same order of magnitude as E11/U 2
0 , whereas
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Figure 12. Spectra of resolved spanwise fluctuation E22/U 2
0 along the streamwise direction,

at zd = δS: (a) 15◦ (dotted line), 30◦ (dashed line), 45◦(solid line); (b) 60◦ (dotted line), 75◦

(dashed line), 90◦ (solid line); (c) 105◦ (dotted line), 120◦ (dashed line), 135◦ (solid line);
(d) 150◦ (dotted line), 165◦ (dashed line), 180◦ (solid line). Data from simulation C4.

the spectrum of vertical turbulent fluctuations is about one order of magnitude smaller
than that of the other two components (figure 13a). In other words, as will be also
shown later, at this phase turbulence is much more energetic in the horizontal planes
than in the vertical direction. As the phase of motion increases (figures 11a, 12a, 13a)
the overall level of energy increases in the direction of the motion as well as in
the vertical direction over the whole range of wavenumbers, thus indicating that
the rapid growth of turbulence occurs through interaction between streamwise and
vertical motion. When the phase ranges between 45◦ and 105◦ (figures 11a–c, 12a–
c, 13a–c) the level of energy remains nearly constant and the presence of a short
inertial subrange having a canonical slope k−5/3 is detected (as also observed in the
experimental study of Hino et al. 1983). Although the inertial subrange appears very
short, at these phases the spectra of E11 and of E33 fit the Kolmogorov universal law.
During the mid-deceleration, equilibrium conditions are progressively lost and the
energy spectra depart from the universal law. This is in agreement with the findings
of Hino et al. (1983) who observed that due to a pronounced energy dissipation
occurring at mid-deceleration the spectra appear to depart from the k−5/3 law. In the
late phases of the deceleration the level of the resolved turbulent fluctuations decreases
at all scales (figures 11d , 12d , 13d), but, similarly to the behaviour observed at 15◦,
the vertical fluctuations decay much more rapidly than the other components. From
150◦ to 30◦, an inertial range cannot be detected (figures. 13d and 13a) and the value
of the constant Cs changes from phase to phase, thus showing lack of universality.
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Figure 13. Spectra of resolved vertical fluctuation E33/U 2
0 along the streamwise direction,

at zd = δS: (a) 15◦ (dotted line), 30◦ (dashed line), 45◦(solid line); (b) 60◦ (dotted line),
75◦ (dashed line), 90◦ (solid line); (c) 105◦ (dotted line), 120◦ (dashed line), 135◦ (solid
line); (d) 150◦ (dotted line), 165◦ (dashed line), 180◦ (solid line). The straight lines are the
isotropic Kolmogorov spectra (24/55)Csε

2/3k−5/3, with the dissipation rate ε calculated at the
actual phases; Cs = 1.5 is the universal Kolmogorov constant (Sreenivasan 1995). Data from
simulation C4.

This effect can be attributed to the fact that from 150◦ to 30◦ the flow field is in
non-equilibrium conditions. Specifically, as first showed by Hino et al. (1983), the
late deceleration is characterized by absence of near-wall turbulent production due to
the rise of a new laminar boundary layer in the reverse direction, and the flow field
contains large eddies accompanied by few small-scale structures; the early acceleration
is characterized by the growth of the laminar boundary layer and the few structures
present in the flow field are residual ones generated during the preceding deceleration
phases.

An effective way to quantify departure from equilibrium is to compute the structure
parameter a1 = 〈u′w′〉/2K where K = 1/2 〈u′

iu
′
i〉 is the turbulent kinetic energy.

For steady turbulence, a1 ≈ 0.15 in the logarithmic layer, whereas lower values are
typical of three-dimensional boundary layer and non-equilibrium flows. The structure
parameter a1 was used by, among others, Scotti & Piomelli (2001) in the pulsating
flow case to characterize the phases of the oscillatory cycle. In figure 14 we show
the evolution of the structure parameter over a half-cycle. In the early acceleration
(15◦ to 30◦) the structure parameter is noticeably smaller than 0.15 in the whole
fluid column; from 60◦ to 150◦ a plateau is reached in the log-region, with a value
slightly larger than 0.15, thus revealing the presence of equilibrium turbulence. Later
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Figure 14. Structure parameter a1 in semi-log plot from 15◦ to 180◦.
Data from simulation C4.

the presence of a plateau is no longer detected and a1 progressively decreases, thus
showing departure from equilibrium occurring in the late deceleration.

In order to get a picture of the mechanism by which turbulent energy is generated
and dissipated over the oscillation, in figure 15 we show the evolution of the mean
production and dissipation rates of the resolved turbulent kinetic energy throughout
the half-cycle:

PK = −〈u′′w′′〉d〈u〉
dz

− 〈τ13〉d〈u〉
dz

, (3.4)

εK = − 1

Re

〈
∂u′′

i

∂xj

∂u′′
i

∂xj

〉
− 〈τijSij 〉. (3.5)

Figure 15 shows that both production and dissipation of turbulent kinetic energy
switch on between 30◦ and 45◦ and, from 45◦ to 120◦ their vertical distribution
resembles that of a canonical steady boundary layer. On the other hand, over the
half-cycle, both terms strongly decrease up to a complete suppression observable
from 165◦ to the end of the half-cycle. This suppression is related to the inversion
of the velocity profile in the near-wall region and the early developing of a laminar
boundary layer in the reverse direction. The maxima of production rate are very close
to the wall, located approximately at 0.14δS between 60◦ and 120◦ that, in wall units,
corresponds to z+ ≈ 11–12, thus being within the buffer layer. The maximum values
of the non-dimensional production rate and dissipation rate, respectively 0.22 and
−0.16, are close to the values obtained for the canonical steady plane-channel flow at
a friction Reynolds number equal to 180 (Mansour, Kim & Moin 1988), respectively
equal to 0.21 and to −0.166. This suggests that once a fully developed turbulent state
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Figure 15. Vertical profiles of production rate (solid line) and dissipation rate (dashed line) of
the resolved turbulent kinetic energy from 15◦ to 180◦. The quantities are made non-dimensional
with u4

τ,max/ν. Data from simulation C4.

has been reached, the Stokes boundary layer evolves along a series of quasi-steady
equilibrium turbulent states.

The evolution over a half-cycle of the vertically integrated terms per unit depth
(henceforth referred to as specific) that contribute to the resolved turbulent kinetic
energy is shown in figure 16. We have also plotted the specific numerical dissipation
rate, which is associated with the use of second-order-accurate numerical schemes.
This quantity is calculated by difference among all the terms composing the budget
of the specific turbulent kinetic energy. The specific production rate as well as the
specific overall dissipation rate (the sum of the molecular, SGS and numerical ones)
sharply increase beyond 30◦. At 45◦ values more than three times larger than those at
30◦ are observed. The specific production as well as the specific overall dissipation rate
have their maxima around 90◦ and then they gradually decrease over the deceleration
phases of the cycle. The unsteady term is always much smaller than the others but
still visible in the plot. The smallness of the time-dependent term is related to the
fact that in most of the cycle of oscillation the turbulent field is in quasi-equilibrium
conditions as previously discussed. Figure 16 shows that the unsteady term is positive
in the acceleration phases of the cycle where K rapidly increases, it is nearly zero
in the central phases of the cycle where turbulence is in equilibrium conditions and
finally it is negative when turbulence decays, namely in the late deceleration phases.
The specific numerical dissipation rate is always much smaller than the overall specific
dissipation rate and also smaller than that given by the SGS model.

Most experimental and numerical studies aimed at the identification and inter-
pretation of the coherent structures have dealt with steady wall-bounded flows (for a
review see Robinson 1991). Recently, the evolution of turbulent coherent structures
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Figure 16. Balance of the resolved turbulent kinetic energy over a half-period: specific
production rate, solid line; specific SGS dissipation rate, dashed-dotted line; specific
numerical dissipation rate, dashed-dashed-dotted line; specific overall dissipation rate
(molecular + SGS + numerical ), dashed line; specific unsteady term, dotted line. All quantities
are made non-dimensional with u4

τ,max/ν. The zero line is also plotted for clarity. Data from
simulation C4.

in a Stokes boundary layer has been investigated experimentally by Sarpkaya (1993)
and by Costamagna et al. (2003) by means of direct numerical simulation. Both
investigations were carried out in the IT regime.

In particular, in the experimental study of Sarpkaya (1993) at Reδ ≈ 400 irregularly
spaced low-speed streaks were observed between the final decelerating phases and
the early accelerating ones, where they completely disappear. At Reδ ≈ 420–460, these
streaks begin to interact with each other, giving rise to quasi-coherent structures. At
these values of Reδ vortical structures eventually start to emerge. They increase in
number and tend to merge into a single streak, which, after having became sinuous,
breaks into shorter segments which grow in amplitude giving rise to heart-shaped
small structures during the deceleration.

The numerical investigation of Costamagna et al. (2003) in the IT regime at
Reδ =800 showed that the generation of longitudinal equi-spaced streaks appears
around the end of the acceleration phase of the cycle and that their break-up always
occurs during the deceleration phase of the cycle.

Figure 17 shows contour plots of the streamwise resolved velocity fluctuations u′′ on
a plane at z+ = 7 over a half-cycle. Consistently with the above investigations, narrow
longitudinal streaks initially appear in the flow field (at 15◦ in the present case),
and appear well-developed and equi-spaced along the y-direction at 30◦. Later (at
45◦) they rapidly coalesce into single more energetic structures and finally they break
into small structures. The presence of a large population of such small structures
is evident from 60◦ (late acceleration part) to 150◦ (deceleration part). Then, the
observed structures tend to decay in intensity and at the same time to lose their
elongated shape (up to 180◦). In the late acceleration phase, in agreement with the
findings of Hino et al. (1983), few large-scale structures are observable in the near-
wall region. A qualitative comparison of the present results obtained in the turbulent
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Figure 17. Contour plots of the fluctuating streamwise velocity u′′ with respect to the
plane-averaged throughout a half-cycle at z+ = 7 calculated using z∗ = ν/uτ,max . Regions with
negative values are depicted in scales of grey. Data from simulation C4.

regime (Reδ = 1790), with those of Sarpkaya (1993) at Reδ ∼ 420–460, of Costamagna
et al. (2003) at Reδ = 800 in the intermittent turbulent regime, and of Scotti & Piomelli
(2001) for pulsating flow in the low-frequency regime under conditions characterized
by periodic relaminarization and re-transition to turbulence (see their figure 22 for
a simulation at Res = 500, where Res is the Reynolds number based on the Stokes
thickness and the amplitude of velocity of the oscillatory component of the motion),
shows that the genesis and evolution of the near-wall streaks is nearly independent
of the flow regime. The presence of elongated equi-spaced streaks, their coalescence
and their successive destruction into a large population of smaller energetic structures
seems to be a common feature of the four investigations. On the other hand, the
phases in the half-cycle along which the streaks develop, evolve and eventually break
into small structures, are strongly dependent on the value of the Reynolds number.
An analysis of our results compared to those of Sarpkaya (1993) and Costamagna
et al. (2003), suggests that the formation of the elongated equi-spaced streaks is
shifted back over the half-cycle toward the phases of acceleration and that the break-
up of these structures does not necessarily occur over the deceleration phases, as
suggested by Costamagna et al. (2003). In fact, we observe this break-up to occur
at a phase angle approximately between 45◦ and 60◦, well before the beginning of
the deceleration phases. This finding is in agreement with the analysis of JSF89,
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who observed the rise of turbulence earlier in the cycle with increasing values of the
Reynolds number. Similar qualitative behaviour has also been observed by Lohmann
et al. (2006).

It is well-known (Pope 2000) that in a canonical boundary layer the spacing between
the streaks in the near-wall region (z+ < 7) is distributed between about 80 and 120
wall units, independent on the Reynolds number. Their length in the streamwise
direction can be as large as more than 1000 wall units, and their width is around
100 wall units. In our simulations the mean spacing between two streaks calculated
at a distance z+ =7 from the wall at phase of 30◦, when the coherent structures are
clearly observed, is around 110 wall units, which is within this range. This value is
in good agreement with that observed by Sarpkaya (1993) (between 85 and 135 wall
units at Reδ = 420−460) and also with the average streak spacing of 127 calculated
by Costamagna et al. (2003) (Reδ = 800) at a distance of about z+ = 8 from the wall.

As argued by Sarpkaya (1993), according to the steady channel flow analysis
of Lam & Banerjee (1992), there exists a critical value of the shear Reynolds number
Re(crit)∗ = uτ δS/ν = (

√
2Reδ)

1/2 ranging from 20 to 28 below which the near-wall
elongated streaks disappear. An average value of Re(crit)∗ ≈ 24 gives Reδ ≈ 400, which
corresponds to the threshold at which the streaks appear and disappear periodically
in Sarpkaya’s experiments. Our Reδ = 1790 yields Re∗ ≈ 50, which is larger than the
critical value found by Lam & Banerjee (1992) for steady currents. However, if we
apply the Re(crit)∗ criterion of Lam & Banerjee (1992) using the ensemble-averaged
values of the friction velocity evaluated at each phase during the oscillation we
observe that only in the range 150◦−180◦ are values of Re∗ of the order of 30 (near
the threshold given by Lam & Banerjee 1992) recorded, whereas, in the remaining
part of the half-cycle Re∗ ranges from 40 to 80. On the other hand, as observed in
figure 17, the presence of clear elongated structures can be detected from about 15◦

up to 150◦, in the range of phase angles at which Re∗ is well above the critical value.
This suggests that, though Sarpkaya (1993) noted as fortuitous the agreement of his
results with the criterion of Lam & Banerjee (1992), our results support his intuition.
Indeed, we observe that a such a criterion may hold in the case of an oscillating
boundary layer, provided that the shear Reynolds number is calculated at each phase
using the ensemble-averaged value of the friction velocity.

A very effective way to visualize the vortical structures in the turbulent field is the
Q-criterion (Dubief & Delcayre 2000). This criterion was also employed by Scotti &
Piomelli (2001) for the visualization of turbulent coherent structures in the pulsating
boundary layer case. Q is the second invariant of the velocity gradient tensor ∇u and
is defined as

Q =
1

2
(Ωij Ωij − Sij Sij ) = − 1

2

∂ui

∂xj

∂uj

∂xi

, (3.6)

where Ωij and Sij are respectively the antisymmetric and the symmetric components
of the resolved velocity gradient tensor. The condition Q > 0 has been found to be
effective in the identification of regions characterized by the presence of coherent
vorticity (Hunt et al. 1988). Figure 18 shows the evolution of the isosurfaces
Q/Q0 = 0.2 (with Q0 =U 2

0 /a2) from 45◦ to 150◦ obtained using the same instantaneous
field as in figure 17. Rotational motion is very weak (Q/Q0 < 0.2) during the early
acceleration where the new near-wall laminar boundary layer is developing; significant
large-scale vorticity develops around 45◦, during the sharp transition to turbulence.
In the mid-to-late acceleration part of the cycle (figure 18b–d) elongated vortical
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Figure 18. Isosurfaces of Q in the wall region in the following phases: (a) 45◦, (b) 60◦,
(c) 75◦, (d) 90◦, (e) 105◦, (f ) 120◦, (g) 135◦, (h) 150◦. The value Q/Q0 = 0.2 is visualized (data
from simulation C4). The direction of the main flow is from left to right.

structures inclined upward are observable. The vortical structures visualized using Q

increase in number and, at the same time, decrease in size, still remaining oriented
along the streamwise direction and inclined upward, over the half-cycle. Similar
structures were also observed by Scotti & Piomelli (2001) in the pulsating flow
in the current-dominated low-frequency regime, when cyclic relaminarization and re-
transition to turbulence occur (see their figure 22). Once the break-up of the initial long
streaks has occurred (between 45◦ and 60◦, figure 18b, c), a large population of elong-
ated short vortical structures is present in the flow field and their number and intensity
gradually decrease over the deceleration phases of the half-cycle (figure 18g, h).
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Data from simulation C4.

The effect of these structures on the turbulent characteristics of the flow field
can be analysed by means of the quadrant analysis of Wallace, Eckelmann &
Brodkey (1972). In figure 19 we plot, for each phase, the u–w sample space of
the resolved fluctuations using the fields shown in figure 18. The II and IV quadrants
are respectively representative of ejection and sweep events whereas the other two
quadrants are not representative of turbulent structures (see Pope 2000 for a detailed
description). The u′′–w′′ values plotted in figure 19 are associated with values of
Q/Q0 > 0.15, thus with the presence of the most energetic structures. In the early
acceleration very few u′′–w′′ events are observable, in conjunction with the absence
of energetic vortex structures. At 30◦ the streamwise fluctuations dominate over
the vertical ones associated with the presence of the quasi-streamwise structures of
figure 17 at the same phase. From 45◦ to 135◦, when turbulence is fully developed,
most of the near-wall events lie within the II and IV quadrants related with the
presence of the elongated and upward inclined structures visualized in figure 18.
From about 135◦ the large-scale inclined structures tend to decay and consequently
figure 19 shows the progressive reduction of the II–IV quadrant events up to their
complete disappearance at 180◦.

The above analysis has shown that from the late phases of the deceleration part
of the half-cycle up to the early phases of the acceleration, turbulence appears to
be less energetic and the shape of the coherent structures to be different from those
developing over the remaining half-cycle. This can be attributed to the rise of the
near-wall new laminar boundary layer in the reverse direction with respect to the
previous half-cycle.

One question of interest is to understand whether the shape of turbulence (i.e. the
shape of the energetic structures that are prevalent in the flow field) changes over
the half-cycle. An effective tool for understanding such a feature is Lumley’s map
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(Lumley 1978) of the invariants of the anisotropy tensor:

bij =
〈u′

iu
′
j 〉

2K
− 1

3
δij

with δij the Kronecker symbol and K the turbulent kinetic energy. The square root
of the second invariant (IIb = − 1

2
bijbji) quantifies the amount of anisotropy in the

flow field, while the third root of the third invariant (IIIb = 1
3

bijbjkbki) gives the
shape of the anisotropy. Lumley (1978) demonstrated that no turbulent state can
lie outside the triangle of figure 20. The point (0, 0) represents isotropic turbulence.
The lines originating from (0, 0) represent axis-symmetric turbulence: cigar-like on
the right, meaning that one component prevails over the others; pancake-like on the
left, meaning that two components have the same order of magnitude and prevail
over the third one; the top line of the triangle represents two-component turbulence,
where one of the three components is absent.

Figure 20 shows the vertical distribution of the turbulent states over half-cycle. As
previously discussed, at the early stage of acceleration the near-wall region is charac-
terized by the developing new laminar boundary layer, and the flow field characterized
by the presence of weak large-scale slowly-decaying turbulent structures remaining
from the previous half-cycle. This behaviour gives a near-wall region characterized
by two-component turbulence (figure 20a) that gradually evolves toward a shape
characterized by one component (streamwise) being larger than the other two, still
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far from the canonical boundary layer shape (for comparison see figure 11.1 of Pope
2000). This corresponds to the fact that at these phases the vertical velocity fluctuations
are much weaker than the horizontal ones (compare figure 13a with figures 11a

and 12a) in the near-wall region. On the other hand, with increased distance
from the wall, turbulence moves along the right-hand line toward the upper-right
vertex of the triangle, namely along the cigar-like behaviour in the direction of one-
dimensionality; this is due to the fact that toward the outer region, the cross-stream
velocity fluctuations tend to decay much faster than the streamwise ones (compare the
vertical distribution of urms in figure 6 with that of wrms and vrms in figures 7 and 8).
At 30◦ (figure 20b) the presence of very long quasi-streamwise streaks (see figure 17)
enhances the level of turbulent fluctuations in the three directions and the near-wall
turbulence moves towards the canonical, cigar-like shape; the outer region behaves
similarly to that at 15◦. This different behaviour is due to the fact that turbulent motion
is first originated in the near-wall region and progressively propagates upwards over
the cycle (see also Hino et al. 1983). Specifically, at 30◦ the outer region is still
characterized by the history effect already discussed, whereas the near-wall region is
moving toward the sharp transition to turbulence. From 45◦ to 135◦ (figure 20d–i) the
distribution of points resembles that of a boundary layer and the points representative
of the log-layer (just below the knee) are clearly visible in the plots. In these cases
we also observe that in the far field, similarly to the canonical wall turbulence, there
is a trend toward isotropization, that is the points move along the right-hand line
toward the origin of the axes. This behaviour is associated with the fact that the
Reynolds shear stress as well as the differences among the three turbulent intensities
tends to be smaller and smaller on going toward the outer region (see figures 5–8).
At 150◦–180◦ (figure 20j–l) the near-wall velocity reverses and a new thin boundary
layer is growing in the reverse direction. Turbulence is present in the flow field due
to the history effect already discussed. In this case the near-wall turbulence appears
to have a clear two-component/pancake-like shape, whereas the far-field turbulence
tends to decay more rapidly in the cross-stream direction than in the streamwise, and
a trend toward the one-component state is detected (see figures. 11d , 12d , 13d). This
behaviour can be associated with the decay of the vortical structures of figure 18.

To sum up, the analysis of the invariant map together with the spectra at zd = δS

and the phase distribution of the Reynolds stresses give the following scenario: in
the central parts of the cycle where a fully developed turbulent regime is detected,
the shape of turbulence is that of a canonical boundary layer; in the remainder of
the cycle the near-wall turbulence has two-component/pancake-like characteristics,
whereas the outer region tends toward one-dimensionality.

4. Performance of the SGS model
As previously stated in § 2 the subgrid-scale (SGS) stresses are modelled by means

of a dynamic mixed model composed of an anisotropic scale-similar (ss) part and
an eddy viscosity (ev) part. Such a model has been proved by many authors to be
able to correctly simulate equilibrium as well as non-equilibrium flows. Among them,
Shao, Sarkar & Pantano (1999) showed that the presence of a scale-similarity part
properly takes into account the rapid-variable component of turbulence that depends
explicitly on the mean shear, whereas the eddy-viscosity part reproduces the slow-
variation component of turbulence not dependent on the mean velocity gradient.
A dynamic eddy-viscosity model, with the constant averaged over the planes of
homogeneity, was employed by Scotti & Piomelli (2001) to investigate pulsating
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Lx/δS, Ly/δS, Lz/δS nx × ny × nz ∆x+, ∆y+, ∆z+
min, ∆z+

max

DNS 16π, 8π, 8π 128 × 128 × 96 13, 6, 2, 27
LES 16π, 8π, 8π 64 × 64 × 96 26, 13, 2, 27
CDNS 16π, 8π, 8π 64 × 64 × 96 26, 13, 2, 27

Table 2. Computational parameters of the simulations at Reδ = 990. CDNS indicates the
DNS simulation performed over the coarse grid.

channel flow in different flow regimes. When employed with a fine grid (∆x+ ∼ 30,
∆y+ ∼ 17 based on the friction velocity of the steady component of the flow) the
model gave results in good agreement with DNS data. This study has clearly shown
the ability of the dynamic model to simulate flow fields characterized by a periodic
sharp transition to turbulence and successive relaminarization. The scope of the
present section is twofold: (i) to show the performance of the dynamic mixed model
with the constant averaged over the planes of homogeneity (PADMM) in the case
of a purely oscillating flow and considering two different flow regimes: the IT regime
(Reδ = 990), where strongly non-equilibrium turbulence occurs over few phases in
the cycle, and the turbulent regime already discussed (Reδ = 1790); (ii) to show that
the SGS model affects the turbulent statistics only in the phases of the cycle where
noticeable turbulent activity is detected.

4.1. Reδ = 990

This case was investigated experimentally by JSF89 (Test 6) and turbulent statistics
are available for comparison with numerical data. We carried out three simulations,
respectively a DNS, an LES and a coarse DNS (performed over the LES grid without
the use of the SGS model). The DNS was carried out using 128 × 128 × 96 grid cells
respectively in the streamwise, spanwise and wall-normal directions. The LES and the
coarse DNS were performed over 64 × 64 × 96 grid points, with the same cell distri-
bution in the wall normal direction as the DNS case and half the number of cells in
the horizontal directions. The parameters of the simulations are in table 2. The results
of the numerical simulations are compared with the available experimental data. The
grid resolution herein employed for the DNS is the same as that of Vittori & Verzicco
(1998), although the domain size in the horizontal directions is as large as twice as
that of the simulations of Vittori & Verzicco (1998) and Costamagna et al. (2003).

The predicted ensemble-averaged wall shear stress is reported in figure 21
(experimental data are not available for this quantity). The late-deceleration to
early-acceleration phases are predicted well by both the LES and the CDNS. These
phases are characterized by the fact that a near-wall laminar boundary layer is
developing and that the flow field is populated by large-scale structures remaining
from the previous deceleration phases. The collapse of the numerical results indicates
that: (i) the resolution of the coarse grid is sufficient to reproduce the flow field in
these phases, characterized by the presence of few small scales (see Hino et al. 1983);
(ii) in these phases the SGS stresses (not reported) are vanishingly small and the
LES is equivalent to a DNS carried out over a coarser grid.

On the other hand, the PADMM fails to reproduce the sharp transition to
turbulence and the associated rapid increase of the wall stress, occurring in the
IT regime. The DNS gives a triangular-shaped behaviour of the wall shear stress in
the phases where non-equilibrium turbulence occurs. This behaviour is typical of the
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Figure 21. Ensemble-averaged wall shear stress along half-cycle in the IT regime
(Reδ = 990): DNS (solid line), LES (dashed line), CDNS (dotted line).

IT regime (see for example figure 5b of Costamagna et al. (2003) which reports the
experimental data of JSF89 at Reδ =1120). The coarse DNS simulation is able to
reasonably reproduce the sharp transition, thus proving that the grid resolution of
the LES grid is fine enough; noticeable differences are obtained using the LES, which
strongly delays transition and appreciably underpredicts the maximum value of the
wall shear stress. The underprediction of the wall stress obtained with the LES can
be attributed to the fact that in the IT regime the turbulent phases of the cycle are in
strongly non-equilibrium conditions, and the underlying hypothesis of the standard
DMM, namely the scale invariance, may be not suited for reproducing this kind of
flow field. Another possible source of error may be the fact that in the IT regime
turbulence appears strongly intermittent and in spots. For this reason plane averaging
of the constant may not be suitable for reproducing such physics. A localized model,
such as for example the Lagrangian one of Meneveau et al. (1996) may be better
suited to reproduce the IT regime.

During the mid-deceleration phase, turbulence is decaying and the differences
among the wall shear stress obtained in the three different simulations progressively
decrease; finally the wall shear stresses of the three simulations collapse onto each
other in the late deceleration phase, where the near-wall velocity has inverted sign
and a new laminar boundary layer is forming in the reverse direction. At these phases,
turbulent production is almost absent and, due to a memory effect, sparse large-scale
structures remaining from the previous phases are present in the flow field (see Hino
et al. 1983).

The analysis of the spectrum of the vertical fluctuation (figure 22) shows that at
Reδ =990 there are no phases where the universal Kolmogorov spectrum for E33 (see
§ 3) holds, thus clearly indicating the absence of equilibrium conditions and of an
inertial subrange.

Figure 23 shows the DNS and LES mean velocity profiles (made non-dimensional
with U0) at four significant phases. Noticeable differences are evident in the near-wall
region only, over the central phases of the cycle, where non-equilibrium turbulence
is detected. The mean velocity profiles are affected by SGS modelling errors in the
phases where turbulence activity is observed (between 70◦ and 135◦), whereas the LES
velocity profiles collapse onto the DNS ones in the remainder, where the contribution
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Figure 22. Spectra of dimensional resolved vertical fluctuation E33/U 2
0 along the streamwise

direction, at z+ = 80: (a) 60o (dotted line), 75o (dashed line), 90o (solid line); (b) 105o (dotted
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is the universal Kolmogorov constant (Sreenivasan 1995). Data from the DNS.
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Figure 23. Ensemble-averaged profiles of the streamwise velocity at Reδ = 990: the quantit-
ies are made non-dimensional with outer variables. DNS, solid line; LES, dashed line. The
profiles are plotted at 15◦, 75◦, 105◦ and 135◦. For clarity the profiles are offset by 1 unit.

of the SGS stresses is very small. If the velocity profiles are scaled with inner variables
(not shown here) the logarithmic velocity profile, previously observed in the T regime,
is absent. This can be attributed to the non-equilibrium character of the highly
intermittent and spotty turbulent phases of the IT regime.
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Figure 24. Second-order statistics over a half-cycle in the IT regime (Reδ = 990):
(a) streamwise turbulent intensity; (b) wall-normal turbulent intensity; (c) Reynolds shear
stress (DNS, solid line; LES, dashed line; CDNS, dotted line; experimental data by JSF89,
dots).

The second-order statistics are shown in figure 24. As a general rule, the LES data
collapse onto the DNS ones in all phases of the cycle other than the central ones.
Differences between DNS and LES data are observable in the phases between 73◦ and
103◦ where the flow is in a non-equilibrium turbulent state. The strong discrepancy
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between DNS and LES at 73◦ is consistent with the differences between wall shear
stress predicted by the two simulations in the central phases (figure 21). As pointed
out, this can be attributed to the fact that the PADMM is not designed for such
non-equilibrium flow conditions, where turbulence appears in spots in the flow field.

A comparison between numerical (DNS) and experimental data shows dis-
agreements in the wall-normal distribution of the Reynolds stresses. Note that the
results of the present simulation are not affected by problems of domain size. Our
domain size in the horizontal directions is twice that used in the DNS of Costamagna
et al. (2003), and allows the two-point correlation functions to decay in less than half
a domain length. For the streamwise intensity, large differences are detected in the
turbulent phases of the half-cycle, whereas noticeable differences for the wall-normal
turbulent intensity are evident in the near-wall region, especially in the range of
phases between 140◦ and 40◦. Finally, differences between DNS and experimental
Reynolds shear stresses can be detected in the near-wall region, over the half-cycle.
As already pointed out these differences may also be related to a high drop-out
rate in the laser measurements (see JSF89). Based on the above discussion it can be
argued that the disagreement in the Reynolds shear stress when comparing numerical
data with experimental ones cannot be simply attributed to SGS modelling errors. As
already discussed, more research is needed to detect the source of such disagreements.

4.2. Reδ = 1790

The increase of the Reynolds number reduces the characteristic time scale of
turbulence compared to that of the oscillatory motion, thus allowing turbulence
to adjust to a series of equilibrium states during the oscillation. As a consequence, as
extensively shown throughout the paper, the PADMM is able to simulate correctly
the Stokes boundary layer in the turbulent regime (see § 3). As widely shown and
discussed in literature (for an exhaustive discussion see for example Piomelli 2004),
when using a dynamic model, an increase of grid resolution reduces the contribution
given by the SGS model to the turbulent quantities and makes the results closer to
those of a DNS. Further, as we will clearly show in this section, in the phases of the
cycle where the level of turbulent fluctuations is around its minimum, the contribution
coming from the SGS model is almost absent.

In figure 25 vertical profiles of the Reynolds shear stress, the dissipation rate and
eddy viscosity at 90◦ (when turbulence is at its maximum) are shown. As expected, the
ss part, that takes into account for the unresolved, more energetic scales of turbulence,
contributes much more to the composition of the Reynolds shear stress than the ev

part (figure 25a). In particular, τ13,ss contributes about the 18 % to the composition
of the total shear stress 〈u′w′〉. A similar behaviour is observable for the dissipation
rate (figure 25b). Specifically, most of the SGS dissipation rate of turbulent kinetic
energy comes from the ss part of the model, consistently with the results obtained
in steady wall-bounded turbulence by Armenio & Piomelli (2000). Since the ss part
of the SGS Reynolds shear stress is much larger than the ev part, the SGS eddy
viscosity associated with the ss part of the model is about one order of magnitude
larger than that associated with the ev part of the model (figure 25c). The sum of
the two SGS contributions is about one order of magnitude smaller than the resolved
one, thus showing that, as usual in resolved LES, most of the turbulence scales are
solved directly.

The distributions of the main SGS quantities along the vertical direction in the
phases at which turbulence is fully developed are similar to those obtained in
steady wall-bounded turbulence (see for instance Armenio & Piomelli 2000), thus



288 S. Salon, V. Armenio and A. Crise

–0.002

–0.001

0
�

u′
w

′�

–0.1

0

D
is

si
pa

ti
on

 r
at

e

0 4 8

zd /δS

0.1

1

10

v T
/v

(a)

(b)

(c)

Figure 25. Vertical profiles at 90◦ of: (a) Reynolds shear stress: total (〈u′w′〉, solid line);
resolved (〈u′′w′′〉, dashed-dotted line); scale-similar part (τ13,ss , dashed line); eddy viscosity
part (τ13,ev , dotted line). (b) Dissipation rate of resolved kinetic energy made non-dimensional
with u4

τ /ν: total (solid line); resolved (dash-dotted line); ss component (dashed line);
ev component (dotted line). (c) Eddy viscosity to molecular viscosity ratio: total (solid line);
resolved (dash-dotted line); ss component (dashed line), ev component (dotted line). Data
from simulation C4.

showing that the dynamic mixed SGS model works properly in the simulation of
unsteady oscillating flows when turbulence is fully developed, without requiring ad
hoc modifications.

A more stringent test of the model is checking its ability to adapt to the local
level of turbulence in those phases of the cycle where the inertial subrange is not
observable and the level of turbulent fluctuations is around its minimum. In order to
check these characteristics we analyse the evolution of the quantities discussed above
over the cycle at a significant distance from the wall. Figure 26 shows that the dynamic
model contributes to the composition of the Reynolds shear stress, the dissipation
rate and the eddy viscosity consistently over the cycle. During the final phases of the
deceleration part and the initial phases of the acceleration, consistently with the fact
that turbulence activity is very small, and the small scales are almost absent (see Hino
et al. 1983), the SGS Reynolds shear stress and the dissipation rate are vanishingly
small. We also note that the SGS contributions to the eddy viscosity (figure 26c) decay
much faster than the resolved one in the late deceleration phases (from 150◦). This
can be attributed to the physical characteristics of the flow field which in these phases
exhibits few small scales, together with the presence of residual large-scale structures
from the previous phases of the cycle. In the mid-acceleration phase, as turbulence
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Figure 26. Mean values throughout the cycle: (a) Reynolds stress at zd ≈ 0.5δS: total 〈u′w′〉
(�), 〈u′w′〉−〈u′〉〈w′〉 (�), 〈u′w′〉ss (�), 〈u′w′〉ev (�); (b) dimensionless dissipation at zd ≈ 0.15δS:
total (�), ss component (�), ev component (�); (c) normalized turbulent viscosity at zd ≈ 2δS:
total (�), ss component (�), ev component (�). Data from simulation C4.

activity increases, for example from 45◦, the subgrid scales contribute proportionally
to the development of the quantities discussed above, thus showing that the dynamic
model adjusts properly to the actual level of turbulence and therefore supplies the
contribution to turbulence from the small scales.

Finally we show in figure 27 the evolution over a half-cycle of the constant C of the
model given in (2.5) at three significant distances from the bottom wall. The constant
evolves throughout the half-cycle in agreement with the development of turbulent
activity: very close to the wall it is practically zero in the late deceleration and early
acceleration phases, according to the development of the near-wall laminar boundary
layer. Small but non-zero values of C are observable from 170◦ to around 30◦ at
z+ =68, due to the history effect previously discussed. Consistently with the sharp
transition to turbulence and the associated generation of small scales, the constant C

rapidly increases between 30◦ and 45◦ and then oscillates around a nearly constant
value. Finally, C first drops to zero near the wall at 165◦, where the inversion of the
velocity profile occurs, whereas the decay is delayed in time as the distance from the
wall increases, thus confirming that turbulence first decays near the wall and is still
sustained in the outer region as a result of the presence of fully developed turbulence
from the mid-deceleration phases.

4.3. Discussion on the performance of the SGS model

As a side result of the present research we have shown that the PADMM is able to
simulate the Stokes boundary layer when quasi-equilibrium turbulence is present in
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Figure 27. Evolution over a half-cycle of the constant C at z+ = 16 (solid line), z+ = 33
(dashed line) and z+ = 68 (dotted line). Data from simulation C4.

the cycle of oscillation, whereas when strongly non-equilibrium turbulence appears
over a few phases of the cycle, typical of the IT regime, the model is not able to
reproduce correctly such phases. In order to understand better the range of application
of the model in such a flow field, we analyse the results in the light of the relevant
literature on the rapidly accelerated turbulent boundary layer. In particular, it has
been established (see among others Greenblatt & Moss 2004 and Narasimha &
Sreenivasan 1973) that depending on the size of the parameter

p+ = −(ν/ρu3
τ )

dp

dx
,

the flow can remain in local equilibrium, can lose equilibrium conditions and finally,
can re-laminarize. The maximum pressure gradient can be calculated assuming that
ρdU/dt = −dp/dx with U the time-evolving free-stream velocity. The parameter p+

can be considered as the ratio between a turbulent inner-layer time scale ν/u2
τ and a

free-stream time scale [(1/uτ )dU/dt]−1. When p+ is small the turbulent time scale is
small and turbulence adjusts to local equilibrium conditions during the acceleration
phase; for intermediate values the turbulent time scale increases and turbulence is
characterized by strongly non-equilibrium conditions, and finally, a further increase
of p+ leads to relaminarization in the flow field. In Greenblatt & Moss (2004) three
cases were studied in the three regimes discussed above, respectively characterized
by p+ = 0.012, 0.019, 0.045. Here we extend these findings to our case, which is
characterized by the periodic variation of the forcing pressure gradient and thus by
the fact that during the oscillation the parameter p+ goes from ∞ (when uτ =0) to 0,
when the free-stream pressure gradient is zero (90◦).

Figure 28 shows the parameter |p+| over a half-cycle for the simulation in the
IT regime and in the T regime. In the T regime, we observe the presence of
three distinct regions during the acceleration (from 0◦ to 90◦). In the first part
(∞ > |p+| > 0.02) p+ decreases along a curved line. This corresponds to the phases
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Figure 28. Mean evolution of the time scale ratio |(dU/dt)(ν/u3
τ )| for LES at Reδ = 1790

(solid line), DNS at Reδ = 990 (dashed line) and LES at Reδ = 990 (dashed-dotted line).

where a new boundary layer is just building up and, since the pressure gradient
varies as cos t and uτ ∼ (sin t)1/2, we have p+ ∼ cotg t/(sin t)1/2. There is a second part
where 0.02 >p+ > 0.01, characterized by having a constant large slope, where the
flow is in the transitional phase, and a third phase, characterized by a gentle slope,
(0.01 > |p+| > 0) where equilibrium conditions are reached. Note that the boundary
between the regions roughly correspond to the values discussed by Greenblatt &
Moss (2004).

In case of low Reynolds number (IT regime) the behaviour of |p+| is qualitatively
different from that previously discussed. Specifically, the presence of the laminar
region characterized by the curved line (∞ > |p+| > 0.02) is still detectable as well as
the transitional region for |p+| < 0.02. The main difference with the case Reδ = 1790
is the absence of a sharp change of slope at the value 0.01; rather we observe that
|p+| goes from 0.02 to 0 along a curved line. This behaviour is associated with the
presence of a range of phases characterized by non-equilibrium turbulence.

Based on these findings, the literature results on accelerated boundary layers can
be reinterpreted and extended for the case of periodic forcing. In view of the
fact that p+ varies from ∞ to 0, irrespective of the value of Reδ , a priori values
defining the transition from one regime to another (for example from laminar to
transitional phases) cannot be found. Rather we can distinguish one flow regime from
another one based on the slope of |p+|(t). The laminar phases are characterized by a
cotg t/(sin t)1/2 behaviour. The transitional and the turbulent phases have different
behaviour depending on the value of Reδ . In the IT regime (low Reδ value) the
transitional phase starts at p+ ∼ 0.02 and it decreases to 0 at 90◦ along a curve. At
large values of Reδ (T regime) the transitional phase lies within 0.02 > |p+| > 0.01 and
is characterized by a rapid decay of p+, whereas the equilibrium turbulence phase
(0.01 > |p+| > 0) goes along a line with gentle slope.

Now, we attempt to assess the performance and the range of application of the
PADMM on the basis of the qualitative behaviour of |p+| over the acceleration
phases:

(i) The PADMM is not suited to the simulation of the Stokes boundary layer in
the IT regime, where equilibrium conditions are never reached during the half-cycle.
This circumstance is demonstrated well by the fact that |p+| does not exhibit a sharp
change of slope at 0.01.
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(ii) The PADMM is able to simulate accurately the Stokes boundary layer in the T
regime, where a large fraction of the oscillatory cycle is characterized by equilibrium
turbulence and the transition to turbulence occurs very sharply. This behaviour is
depicted by the sharp change of slope of |p+| at 0.01.

5. Concluding remarks
In the present work an LES study of the Stokes boundary layer in the tur-

bulent regime at Reδ = 1790 was carried out. The subgrid-scale stresses were modell-
ed through a plane-averaged dynamic mixed model. Owing to the burdensome
computational efforts required for such a study, the code adopted was implemented
in a parallel framework.

The statistics accumulated over 30 half-cycles of simulation were analysed and
compared with the experimental data of test 8 of JSF89. Different computational
grids and geometrical configurations were used. In the case of a perfectly flat wall,
the fine-grid simulations C3–C5 supply a good estimation of the wall shear stress
as well as of the turbulent intensities. The vertical profiles of the mean streamwise
velocity and of the second-order statistics appear to be reproduced well during most
of the phases of the half-cycle where equilibrium turbulence is present. Overall a very
satisfactory agreement between numerical results and experimental data was obtained.
Some disagreements between numerical and experimental vertical turbulent intensities
appeared in the phases of the cycle between 160◦ and 30◦, and for the r.m.s. of the
wall shear stress in the central part of the half-cycle. Such disagreements were found
not to be dependent either on the imposition of a shear-free surface at the top of the
domain or on the presence of small-amplitude wall imperfections. On the other hand,
an analysis of the literature suggests that disagreements between numerical (DNS)
results and experimental data are observed when comparing second-order statistics in
such kinds of flow. Additional simulations carried out in the IT regime at Reδ =990
show that disagreements are also present when comparing DNS with experimental
data. Since our LES with a dynamic model asymtotically converges toward DNS with
increased grid resolution, one may argue that such disagreements are not simply due
to SGS modelling. This issue deserves more research.

Our fine-grid computations correctly simulated the evolution of turbulence over
the alternation of acceleration and deceleration phases in the cycle of oscillation.
Specifically, a rapid increase of turbulent kinetic energy was observed between 30◦

and 45◦, associated with the sudden increase of the production rate of K . Fully
developed equilibrium turbulence appeared between 60◦ and 150◦–160◦. From 165◦

a new near-wall laminar boundary layer develops in the reverse direction, whereas
due to a history effect few large-scale structures from the previous phases populate
the fluid column. The new near-wall laminar boundary layer continues to develop
through the early acceleration phase up to 30◦–45◦, when a new sharp transition
to turbulence is observed. Our analysis is fully consistent with the findings of the
experimental study of Hino et al. (1983) in the IT regime and with those of JSF89 in
the IT–T regimes.

In the phase interval between 60◦ and 150◦ the following features were observed:
the mean velocity profiles are characterized by the presence of a log-layer, similar to
that of a canonical steady boundary layer; the one-dimensional energy spectra exhibit
a very short, but still detectable, inertial range obeying the Kolmogorov universal law
with constant Cs =1.5. The maxima of the production and dissipation rates of the
turbulent kinetic energy, scaled with inner variables, are very close to those of a



Stokes boundary layer in the turbulent regime 293

steady plane channel flow at Reτ =180. These findings clearly indicate that once fully
developed conditions are reached, the turbulent phases evolve over the cycle through a
series of quasi-equilibrium states, resembling those of an equivalent steady boundary
layer.

An analysis of the space–time distribution of the Reynolds stresses, of the energy
spectra, of the instantaneous coherent structures, and of the map of anisotropy of the
Reynolds stresses has shown the presence of two different regions in the flow field,
namely a near-wall region (zd < 5δS) and an outer one (zd > 5δS).

In the near-wall region, elongated streaks nearly equi-spaced along the spanwise
direction are generated around 15◦, their mean spacing of 110 wall units being in
agreement with the literature data; then they coalesce and successively break up into
smaller structures. Such dynamics appears similar to that observed in the IT regime
by other authors, apart from the fact that the phase at which the elongated streaks are
formed and successively break up, appears shifted back to well before the beginning
of the deceleration part. As also explained in JSF89, this can be attributed to a
Reynolds number effect. The mechanism of streak formation, successive coalescence
and eventual destruction appears similar to that observed by Scotti & Piomelli (2001)
for a pulsating flow in the current-dominated and low-frequency regime, when the
amplitude of the oscillation is large enough to give relaminarization and successive
re-transition to turbulence in the flow field. As also argued by Scotti & Piomelli
(2001), this appears to be a feature of an unsteady flow which undergoes periodic re-
transition to turbulence, rather than an inherent characteristic of the Stokes boundary
layer. Our results also give support to the intuition of Sarpkaya (1993), who asserted
that there must be a value of the shear Reynolds number around 20–28 beyond which
elongated and regular structures break up into a population of small ones giving rise
to the production of smaller and smaller scales. Specifically we find that the criterion
applied using the ensemble-averaged value of the wall shear stress gives the phase at
which the breaking of the structures is expected in the cycle. From around 160◦ a new
laminar boundary layer is estabilished in the reverse direction and it develops in a
laminar state up to the early acceleration phases. At these phases large-scale residual
turbulent structures, from the energetic phases of the cycle, are present in the fluid
column. In the near-wall region the development of the laminar boundary layer tends
to destroy vertical turbulent fluctuations at a larger rate than the horizontal ones,
thus giving rise to two-component/pancake-like turbulence.

The outer region, from 45◦ to 135◦, behaves similarly to that of a canonical
boundary layer, since turbulence tends to move toward isotropy far from the wall.
On the other hand, from 135◦ to 30◦ the opposite is true, in that two components of
turbulence, namely the cross-stream ones, tend to decay faster than the streamwise
one, thus giving rise to a shape that moves towards the one-component turbulence.

As already proved by Scotti & Piomelli (2001) the plane-averaged dynamic SGS
model is able to simulate periodically driven turbulent flows even when part of the
cycle of oscillation is in a laminar state. Our results show that the PADMM correctly
reproduced the Stokes boundary layer in the T regime. As a side result of the present
research, the performance of the SGS model was also evaluated in the IT regime,
where the flow field is in a laminar state over most of the cycle, and non-equilibrium
turbulence occurs over a few phases from late acceleration to mid deceleration. In
this case the model was not able to simulate correctly the turbulent phases of the
cycle. This may be attributed to two main reasons: (i) the underlying hypothesis
of the DMM (namely scale invariance) does not hold in strongly non-equilibrium
conditions; (ii) plane averaging of the constant is not suitable in the IT regime where
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turbulence appears to be highly intermittent and spot-like in time and in space.
The use of localized models may be beneficial at such a condition. The range of
application of the PADMM was assessed based on the evolution along the phases
of acceleration of the non-dimensional parameter p+ that can be interpreted as the
ratio between a turbulent time scale and an inertial time scale. The PADMM works
successfully when a sharp change of the slope of the time evolution of p+ occurs at
0.01. From a physical point of view this corresponds to the developing of equilibrium
turbulence.

We wish to thank Professor M. Sumer for having kindly provided his experimental
data. The present research has been financially supported by the Istituto di
Oceanografia e di Geofisica Sperimentale – OGS. The numerical computations have
been carried out on the IBM-SP4 facility of CINECA (Bologna, Italy).
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